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I. INTRODUCTION 
The Optimization Algorithm Toolkit (OAT) is an open source software project written in Java 
that provides a suite of Computational Intelligence optimization problem domains with 
problem instances, classical and state-of-the-art algorithms, visualisation, graphs, and much 
more. This work introduces the OAT including an overview of the software (Section II. ), an 
overview of the vision and philosophy for the project (Section III. ), and some suggestions for 
future work for the project (Section IV. ).  

II. THE SOFTWARE 
This section considers the OAT from both a historic perspective and with regard to the three 
current modalities for its application: exploration, experimentation, and a platform. This work 
considers OAT 1.4 as of December 2007 that may be accessed via the OAT Software 
webpage http://optalgtoolkit.sourceforge.net and the OAT Project webpage 
http://sourceforge.net/projects/optalgtoolkit. 

A. Problems and Algorithms 
The OAT was formed in November 2006 from the integration of two software projects: 
Function Optimization and Combinatorial Optimization created by Jason Brownlee with 
contributions from Daniel Angus. Both of these previous software projects were publically 
released in March 20061. The Function Optimization software project provided a series of 
evolutionary algorithms and benchmark continuous function optimisation problem instances 
and was later adapted for participation in the Huygens Probe Optimization challenge at 
CEC20062 (also see [2]). The Combinatorial Optimisation software project was an adaptation 
of some of the framework from the Function Optimization project and predominantly 
provided a series of Ant Colony Optimization (ACO) algorithms (taken from [9]) applied to a 
small set of Travelling Salesman Problem (TSP) instances from TSPLIB3 [4]. Both software 
projects provided a rudimentary API for exploiting the algorithms and problem instances as 
well as a basic graphical interface that loosely resembled the current OAT Explorer interface. 
The principles of the parallel software development projects were to provide a framework for 
the easy and rapid implementation and verification of computational intelligence optimisation 
algorithms for specific problem domains such that the products of interest and labour 
(principally the algorithms) could be shared and applied with less concern with their technical 
implementation. Toward this end, algorithms were designed to be self-contained such that 
their implementation could be adapted and extended for specific application needs. The 
software development philosophy of code robustness and understandability was promoted 
over raw implementation efficiently to provide both a learning resource and promote 

                                                   
1 Both projects were formally hosted on Jason Brownlee’s personal website located at the URL 
http://www.ict.swin.edu.au/personal/jbrownlee   
2 Online: http://ai.csse.uwa.edu.au/huygens/  
3 Online http://www.iwr.uni-heidelberg.de/groups/comopt/software/TSPLIB95/  
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extensibility. These principles were carried over and elaborated in the creation and ongoing 
development of OAT.  

B. OAT Explorer 
The OAT Explorer interface provides an entry point for the interested novice and the research 
scientists alike in which algorithms and problem instances can be selected, configured, and 
executed. The focus of this entry point is on informal exploratory experimentation via run 
visualisation and information collection, and was inspired by the explorer interface in the 
WEKA machine learning workbench [5]4.  
 
For the majority of the subfields of computer science, theory is preferred over 
experimentation given the fields strong basis in logic and mathematics [12]. In artificial 
intelligence, and computational intelligence in particular, experimentation is preferred over 
theoretical methods as the systems (strategies for adaptation and learning) are typically too 
complex for conventional analysis techniques. The experimental approach to computational 
intelligence results in many problems related to trust, reproducibility, and ultimately 
methodology (for example see Brownlee [6] and in particular the references in that work). 
Computational Intelligence algorithms are typically learning algorithms which means that 
even if they are implemented incorrectly or miss-configured they are still able to make 
progress in a given problem domain. This results in the problem of verifying whether an 
algorithm is implemented correctly. The focus on visualisation and information gathering 
regarding algorithm-problem runs in the explorer is intended to address two problems: (1) the 
experimental verification of algorithm implementation by assessing actual against expected 
behaviour and or performance, and (2) facilitating informal exploratory research via 
observation into new and or unfamiliar approaches. The so-called ‘playing’ with adaptive 
learning systems in the explorer interface is intended to promote creative thinking with regard 
to the design of formal experimentation and formalisation of system behaviour.   

C. OAT Experimenter 
The OAT Experimenter interface provides an entry point for interested novices and research 
scientists alike for the design, execution, and analysis of experimentation with computational 
intelligence optimisation algorithms. The focus of this entry point is the formal exploratory 
experimentation via the promotion of best practice experimental methodology, inherent 
repeatability, and externalisation of experiment design and execution results. Given that 
experimentation is a large part of the field of computational intelligence, experimental 
methodology is important to provide a rigours framework (see Cohen [11] for an excellent 
treatment of empirical methods in AI). There is a large body of literature criticising the 
experimental methodology in the related fields of applied optimisation, heuristics, 
metaheuristics, and computational intelligence (again, the reader is referred to the 
bibliography in Brownlee [6]). The focus of the OAT Experimenter interface is to promote 
best practice in experimental design, execution, and analysis. With regard to experimental 
design, a simple problem-algorithm matrix methodology is provided which is externalised to 
file to promote reproducibility and sharing. With regard to experimental execution a batch 
execution facility is provided. Finally, with regard to experimental analysis a suite of 
statistical hypothesis testing tools are provided to promote the rigorous reporting and 
interpretation of results.  

D. OAT Platform 
The graphical user interfaces in the OAT are intended to provide the average usage case for 
exploration and experimentation. In addition to user interfaces, OAT provides an extensible 
framework for the development and implementation of new problem domains, problem 
instances, and algorithms that provide solution-generating strategies to such problems (the so-

                                                   
4 Software Online: http://www.cs.waikato.ac.nz/ml/weka/  
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called Domain-Problem-Algorithm pattern of organisation [7]). The focus of the OAT 
Platform is reusable solution generating strategies. The remainder of the framework exists to 
support the strategies, such as information gathering in the case of run probes and standards 
for assessment and comparison in the case of benchmark problem instances. Computational 
Intelligence (also called soft computing and messy artificial intelligence) optimisation 
strategies are the type of strategies that dominant the platform, although classical approaches 
are facilitated. Finally, optimization is the dominant type of problem addressed in the 
platform because of its ubiquity in the field and because many other problems can be 
represented as optimisation problems, such as regression, search, adaptation, classification, 
and function approximation. 

III. THE VISION 
Personal experience by the author has shown that there is much research in the field of 
Computational Intelligence that is hidden in obscurity and or obfuscation. In aggregation, this 
results in an unclear communication by the field on what is good and worth using (as well as 
the converse), and what the open and interesting problems are. A published work of an 
approach or problem without source code or a reproducible description has a contribution to 
the field of practically nothing. Those approaches that can be independently implemented are 
typically extremely brittle, requiring significant fixing to make them robust enough to be 
applicable to a broader set of problem instances. These experiences occurred during the 
research and implementation of the meagre set of optimization algorithms in the present 
version5. As a researcher in the field of Computational Intelligence the motivation should be 
to make contributions that can be understood and extended. Specifically, with regard to 
optimization algorithms researches must want their algorithms understood and used by 
colleagues and sufficient interest that their results are challenged and undependably verified.  
 
The ultimate vision for the Optimization Algorithm Toolkit is to promote progress in the field 
of Optimization with Computational Intelligence. The OAT vision of progress is promoted 
through the construction and maintenance of an accessible and robust knowledgebase of 
computational intelligence optimization strategies, codified in the OAT. The following lists 
some ideals that are promoted in OAT and are expected to result in progress in the field of 
both Applied Optimization and Computational Intelligence: 
 
- Standardisation: The best practice in computational intelligence refined through 

aggregate contribution from the field and codified firstly in a software platform, but 
ultimately in an online knowledge repository. Specifically the capture of best practice in 
computational intelligence optimisation algorithm implementation, experimentation, and 
application, and the moving away from a diverse ecosystem of typically poorly executed 
and communicated research. 

- Openness: The complete availability and accessibility of information through open source 
implementation and online distribution. Specifically this refers to the openness of 
computational intelligence algorithm implementations and related problem definitions 
and configuration specifications, and the moving away of poorly described and 
obfuscated contributions to the field. 

- Repeatability: The replication of experimentation, observation, and behaviour facilitated 
through openness. Specifically this refers to the ability to repeat historic, seminal, and 
newly published experimentation results promoting verification and extension, and 
moving away from hidden, lost, and obscured contributions to the field.  

- Promotion: The visibility and acceptance of the strengths and limitations of strategies. 
Specifically the promotion of those thrusts of research that lead to promising results, and 
the demonstration of those thrusts that do not, moving away from the ambiguity fostered 
through lack of openness and repeatability.  

                                                   
5 As of writing: OAT 1.4 and preceding versions. 
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- Participation: The involvement of a larger and more diverse pool of contributors 
provided through variety entry points of varying expertise and complexity. Specifically, 
the participation and contribution by new and seasoned research scientists from 
Computational Intelligence and related fields, as well as interested novices. 

 
The following scenarios provide grounding for the OAT vision: 
Consider being able to make significant contributions to computational intelligence via 
exploratory and experimental research without writing a line of code (for example citizen 
science). Consider realising a new strategy as an algorithm implementation in a framework 
with pre-implemented suites of benchmark problem instances and pre-calculated comparative 
results on standard indicators. Consider formulating a new problem instance and having a 
suite of classical and state-of-the-art approaches pre-implemented. Consider a computational 
intelligence software project used, maintained, and refined by thousands of people including 
both the leaders in the field and novices alike. 
 
Repeatability promotes the independent implementation of approaches and problems and the 
replication of experiments, although it is important to highlight that with effective openness 
(structured accessibility for example) the source code and results are already available. Thus, 
one may independently replicate if one desires, or may directly exploit the quantitative 
product of an experimentation reducing the duplication of effort. This highlights an important 
part of the OAT vision, inspired by Goldberg is his methodology for assessing genetic 
algorithms [3]. Specifically that the implementation and quantitative experimentation of a 
technique on a limited set of problem cases is in fact low-cost qualitative research. One may 
consider such research zeroth level and of limited contribution. Once implementation, 
assessment, and comparison are standardised and systematised (and perhaps largely 
automated), one may focus energies on the patchwork integration of finding towards coherent 
theories of adaptation, optimization, and or learning. This important point highlights that the 
vision of progress in OAT shifts the focus of the field from implementation and small-scale 
experimentation toward broader, open, and more interesting problems. 

IV. THE FUTURE 
The vision for OAT is enthusiastically grand, although there is much tangible work that may 
provide measurable progress. The following provides an outline of some sub-projects for 
important future work on the OAT: 
 
- Implement Everything: There are a lot of published optimization algorithms, problem 

domains, problem instances, standard measures, and benchmark suites in the fields of 
computational intelligence, heuristics, operations research, mathematics, physics, and 
other fields. A concerted effort from a few core developers, and a broader team of 
implementation and test developers could see the implementation of a vast amount of 
optimization related research in a very short amount of time. The WEKA machine 
learning platform [5] and the R project6 are cited as machine learning and statistical 
methods respectively as examples of projects where this has occurred.  

- Online Repository: An online repository for artefacts generated by the software project 
can be developed beyond the current OAT Software and OAT Project webpage’s. This 
repository would allow the submission of extension, patches, and plug-ins, such that it 
fostered project extensibility and community. This repository would also involve a 
backend database for storing experimental statistics of standard approaches on benchmark 
problem instances with web-based reporting7.  

- Automated Discovery: A large and robust suite of approaches and problem instances may 
be subjected to automated methods of discovery. This may include but is not limited to 
statistical racing of techniques (for example see [1,8,10]), statistical sensitivity analysis of 

                                                   
6 Online: http://www.r-project.org/  
7 For example see Duch with artificial neural networks: http://www.is.umk.pl/projects/datasets.html 
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parameters, and the data mining of indicators from large numbers of experimental 
observations (many techniques on many problem instances in a database). 

 
It is believed that the extensive implementation of domains, problems, and algorithms will 
promote the formation of an online repository, which will in turn promote the mining of 
knowledge captured in such a repository. It is expected that the culmination will be an 
enterprise in the field of computational intelligence based optimization that will contribute 
strongly suggestions at the general applicability and constraints of existing techniques (clear 
general contributions of the field) and at the important and open problems to be pursued in the 
field study.  
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