
Technical Report 20071220A December 2007 page 1 of 6

OAT: The Optimization Algorithm Toolkit

JASON BROWNLEE
Technical Report 20071220A

Complex Intelligent Systems Laboratory, Centre for Information Technology Research,
Faculty of Information and Communication Technologies, Swinburne University of Technology

Melbourne, Australia
jbrownlee@ict.swin.edu.au

or
jbrownlee AT users.sourceforge.net

I. INTRODUCTION
The Optimization Algorithm Toolkit (OAT) is an open source software project written in Java
that provides a suite of Computational Intelligence optimization problem domains with
problem instances, classical and state-of-the-art algorithms, visualisation, graphs, and much
more. This work introduces the OAT including an overview of the software (Section II.), an
overview of the vision and philosophy for the project (Section III.), and some suggestions for
future work for the project (Section IV.).

II. THE SOFTWARE
This section considers the OAT from both a historic perspective and with regard to the three
current modalities for its application: exploration, experimentation, and a platform. This work
considers OAT 1.4 as of December 2007 that may be accessed via the OAT Software
webpage http://optalgtoolkit.sourceforge.net and the OAT Project webpage
http://sourceforge.net/projects/optalgtoolkit.

A. Problems and Algorithms
The OAT was formed in November 2006 from the integration of two software projects:
Function Optimization and Combinatorial Optimization created by Jason Brownlee with
contributions from Daniel Angus. Both of these previous software projects were publically
released in March 20061. The Function Optimization software project provided a series of
evolutionary algorithms and benchmark continuous function optimisation problem instances
and was later adapted for participation in the Huygens Probe Optimization challenge at
CEC20062 (also see [2]). The Combinatorial Optimisation software project was an adaptation
of some of the framework from the Function Optimization project and predominantly
provided a series of Ant Colony Optimization (ACO) algorithms (taken from [9]) applied to a
small set of Travelling Salesman Problem (TSP) instances from TSPLIB3 [4]. Both software
projects provided a rudimentary API for exploiting the algorithms and problem instances as
well as a basic graphical interface that loosely resembled the current OAT Explorer interface.
The principles of the parallel software development projects were to provide a framework for
the easy and rapid implementation and verification of computational intelligence optimisation
algorithms for specific problem domains such that the products of interest and labour
(principally the algorithms) could be shared and applied with less concern with their technical
implementation. Toward this end, algorithms were designed to be self-contained such that
their implementation could be adapted and extended for specific application needs. The
software development philosophy of code robustness and understandability was promoted
over raw implementation efficiently to provide both a learning resource and promote

1 Both projects were formally hosted on Jason Brownlee’s personal website located at the URL
http://www.ict.swin.edu.au/personal/jbrownlee
2 Online: http://ai.csse.uwa.edu.au/huygens/
3 Online http://www.iwr.uni-heidelberg.de/groups/comopt/software/TSPLIB95/

Technical Report 20071220A December 2007 page 2 of 6

extensibility. These principles were carried over and elaborated in the creation and ongoing
development of OAT.

B. OAT Explorer
The OAT Explorer interface provides an entry point for the interested novice and the research
scientists alike in which algorithms and problem instances can be selected, configured, and
executed. The focus of this entry point is on informal exploratory experimentation via run
visualisation and information collection, and was inspired by the explorer interface in the
WEKA machine learning workbench [5]4.

For the majority of the subfields of computer science, theory is preferred over
experimentation given the fields strong basis in logic and mathematics [12]. In artificial
intelligence, and computational intelligence in particular, experimentation is preferred over
theoretical methods as the systems (strategies for adaptation and learning) are typically too
complex for conventional analysis techniques. The experimental approach to computational
intelligence results in many problems related to trust, reproducibility, and ultimately
methodology (for example see Brownlee [6] and in particular the references in that work).
Computational Intelligence algorithms are typically learning algorithms which means that
even if they are implemented incorrectly or miss-configured they are still able to make
progress in a given problem domain. This results in the problem of verifying whether an
algorithm is implemented correctly. The focus on visualisation and information gathering
regarding algorithm-problem runs in the explorer is intended to address two problems: (1) the
experimental verification of algorithm implementation by assessing actual against expected
behaviour and or performance, and (2) facilitating informal exploratory research via
observation into new and or unfamiliar approaches. The so-called ‘playing’ with adaptive
learning systems in the explorer interface is intended to promote creative thinking with regard
to the design of formal experimentation and formalisation of system behaviour.

C. OAT Experimenter
The OAT Experimenter interface provides an entry point for interested novices and research
scientists alike for the design, execution, and analysis of experimentation with computational
intelligence optimisation algorithms. The focus of this entry point is the formal exploratory
experimentation via the promotion of best practice experimental methodology, inherent
repeatability, and externalisation of experiment design and execution results. Given that
experimentation is a large part of the field of computational intelligence, experimental
methodology is important to provide a rigours framework (see Cohen [11] for an excellent
treatment of empirical methods in AI). There is a large body of literature criticising the
experimental methodology in the related fields of applied optimisation, heuristics,
metaheuristics, and computational intelligence (again, the reader is referred to the
bibliography in Brownlee [6]). The focus of the OAT Experimenter interface is to promote
best practice in experimental design, execution, and analysis. With regard to experimental
design, a simple problem-algorithm matrix methodology is provided which is externalised to
file to promote reproducibility and sharing. With regard to experimental execution a batch
execution facility is provided. Finally, with regard to experimental analysis a suite of
statistical hypothesis testing tools are provided to promote the rigorous reporting and
interpretation of results.

D. OAT Platform
The graphical user interfaces in the OAT are intended to provide the average usage case for
exploration and experimentation. In addition to user interfaces, OAT provides an extensible
framework for the development and implementation of new problem domains, problem
instances, and algorithms that provide solution-generating strategies to such problems (the so-

4 Software Online: http://www.cs.waikato.ac.nz/ml/weka/

Technical Report 20071220A December 2007 page 3 of 6

called Domain-Problem-Algorithm pattern of organisation [7]). The focus of the OAT
Platform is reusable solution generating strategies. The remainder of the framework exists to
support the strategies, such as information gathering in the case of run probes and standards
for assessment and comparison in the case of benchmark problem instances. Computational
Intelligence (also called soft computing and messy artificial intelligence) optimisation
strategies are the type of strategies that dominant the platform, although classical approaches
are facilitated. Finally, optimization is the dominant type of problem addressed in the
platform because of its ubiquity in the field and because many other problems can be
represented as optimisation problems, such as regression, search, adaptation, classification,
and function approximation.

III. THE VISION
Personal experience by the author has shown that there is much research in the field of
Computational Intelligence that is hidden in obscurity and or obfuscation. In aggregation, this
results in an unclear communication by the field on what is good and worth using (as well as
the converse), and what the open and interesting problems are. A published work of an
approach or problem without source code or a reproducible description has a contribution to
the field of practically nothing. Those approaches that can be independently implemented are
typically extremely brittle, requiring significant fixing to make them robust enough to be
applicable to a broader set of problem instances. These experiences occurred during the
research and implementation of the meagre set of optimization algorithms in the present
version5. As a researcher in the field of Computational Intelligence the motivation should be
to make contributions that can be understood and extended. Specifically, with regard to
optimization algorithms researches must want their algorithms understood and used by
colleagues and sufficient interest that their results are challenged and undependably verified.

The ultimate vision for the Optimization Algorithm Toolkit is to promote progress in the field
of Optimization with Computational Intelligence. The OAT vision of progress is promoted
through the construction and maintenance of an accessible and robust knowledgebase of
computational intelligence optimization strategies, codified in the OAT. The following lists
some ideals that are promoted in OAT and are expected to result in progress in the field of
both Applied Optimization and Computational Intelligence:

- Standardisation: The best practice in computational intelligence refined through

aggregate contribution from the field and codified firstly in a software platform, but
ultimately in an online knowledge repository. Specifically the capture of best practice in
computational intelligence optimisation algorithm implementation, experimentation, and
application, and the moving away from a diverse ecosystem of typically poorly executed
and communicated research.

- Openness: The complete availability and accessibility of information through open source
implementation and online distribution. Specifically this refers to the openness of
computational intelligence algorithm implementations and related problem definitions
and configuration specifications, and the moving away of poorly described and
obfuscated contributions to the field.

- Repeatability: The replication of experimentation, observation, and behaviour facilitated
through openness. Specifically this refers to the ability to repeat historic, seminal, and
newly published experimentation results promoting verification and extension, and
moving away from hidden, lost, and obscured contributions to the field.

- Promotion: The visibility and acceptance of the strengths and limitations of strategies.
Specifically the promotion of those thrusts of research that lead to promising results, and
the demonstration of those thrusts that do not, moving away from the ambiguity fostered
through lack of openness and repeatability.

5 As of writing: OAT 1.4 and preceding versions.

Technical Report 20071220A December 2007 page 4 of 6

- Participation: The involvement of a larger and more diverse pool of contributors
provided through variety entry points of varying expertise and complexity. Specifically,
the participation and contribution by new and seasoned research scientists from
Computational Intelligence and related fields, as well as interested novices.

The following scenarios provide grounding for the OAT vision:
Consider being able to make significant contributions to computational intelligence via
exploratory and experimental research without writing a line of code (for example citizen
science). Consider realising a new strategy as an algorithm implementation in a framework
with pre-implemented suites of benchmark problem instances and pre-calculated comparative
results on standard indicators. Consider formulating a new problem instance and having a
suite of classical and state-of-the-art approaches pre-implemented. Consider a computational
intelligence software project used, maintained, and refined by thousands of people including
both the leaders in the field and novices alike.

Repeatability promotes the independent implementation of approaches and problems and the
replication of experiments, although it is important to highlight that with effective openness
(structured accessibility for example) the source code and results are already available. Thus,
one may independently replicate if one desires, or may directly exploit the quantitative
product of an experimentation reducing the duplication of effort. This highlights an important
part of the OAT vision, inspired by Goldberg is his methodology for assessing genetic
algorithms [3]. Specifically that the implementation and quantitative experimentation of a
technique on a limited set of problem cases is in fact low-cost qualitative research. One may
consider such research zeroth level and of limited contribution. Once implementation,
assessment, and comparison are standardised and systematised (and perhaps largely
automated), one may focus energies on the patchwork integration of finding towards coherent
theories of adaptation, optimization, and or learning. This important point highlights that the
vision of progress in OAT shifts the focus of the field from implementation and small-scale
experimentation toward broader, open, and more interesting problems.

IV. THE FUTURE
The vision for OAT is enthusiastically grand, although there is much tangible work that may
provide measurable progress. The following provides an outline of some sub-projects for
important future work on the OAT:

- Implement Everything: There are a lot of published optimization algorithms, problem

domains, problem instances, standard measures, and benchmark suites in the fields of
computational intelligence, heuristics, operations research, mathematics, physics, and
other fields. A concerted effort from a few core developers, and a broader team of
implementation and test developers could see the implementation of a vast amount of
optimization related research in a very short amount of time. The WEKA machine
learning platform [5] and the R project6 are cited as machine learning and statistical
methods respectively as examples of projects where this has occurred.

- Online Repository: An online repository for artefacts generated by the software project
can be developed beyond the current OAT Software and OAT Project webpage’s. This
repository would allow the submission of extension, patches, and plug-ins, such that it
fostered project extensibility and community. This repository would also involve a
backend database for storing experimental statistics of standard approaches on benchmark
problem instances with web-based reporting7.

- Automated Discovery: A large and robust suite of approaches and problem instances may
be subjected to automated methods of discovery. This may include but is not limited to
statistical racing of techniques (for example see [1,8,10]), statistical sensitivity analysis of

6 Online: http://www.r-project.org/
7 For example see Duch with artificial neural networks: http://www.is.umk.pl/projects/datasets.html

Technical Report 20071220A December 2007 page 5 of 6

parameters, and the data mining of indicators from large numbers of experimental
observations (many techniques on many problem instances in a database).

It is believed that the extensive implementation of domains, problems, and algorithms will
promote the formation of an online repository, which will in turn promote the mining of
knowledge captured in such a repository. It is expected that the culmination will be an
enterprise in the field of computational intelligence based optimization that will contribute
strongly suggestions at the general applicability and constraints of existing techniques (clear
general contributions of the field) and at the important and open problems to be pursued in the
field study.

Acknowledgements
Thankyou to Tim Hendtlass for his support. Thankyou to Daniel Angus for his ongoing
feedback in the discussion on what OAT and computational intelligence is and could be, and
his contributions in the formative period for the software project.

Bibliography

 [1] Bo Yuan and Marcus Gallagher, "Statistical racing techniques for improved empirical

evaluation of evolutionary algorithms," Parallel Problem Solving from
Nature - PPSN VIII, 8th International Conference, Birmingham, UK, pp.
161-171, 2004.

 [2] C. MacNish, "Benchmarking Evolutionary Algorithms: The Huygens Suite," Late
breaking paper at Genetic and Evolutionary Computation Conference
(GECCO-2005), Washington DC, USA, 2005.

 [3] David Edward Goldberg. The Design of Innovation: Lessons from and for Competent
Genetic Algorithms, USA: Kluwer Academic Publishers, 2002.

 [4] G. Reinelt, TSPLIB - A Traveling Salesman Problem Library ORSA Journal on
Computing, vol. 3, pp. 376--3841991.

 [5] Ian H. Witten and Eibe Frank. Data Mining: Practical machine learning tools with
Java implementations, San Francisco: Morgan Kaufmann, 2000.

 [6] Jason Brownlee, "A Note on Research Methodology and Benchmarking Optimization
Algorithms," Complex Intelligent Systems Laboratory (CIS), Centre for
Information Technology Research (CITR), Faculty of Information and
Communication Technologies (ICT), Swinburne University of Technology,
Victoria, Australia, Technical Report ID: 070125, Jan 2007.

 [7] Jason Brownlee, "OAT HowTo: High-level Domain, Problem, and Algorithm
Implementation," Complex Intelligent Systems Laboratory (CIS), Centre for
Information Technology Research (CITR), Faculty of Information and
Communication Technologies (ICT), Swinburne University of Technology,
Victoria, Australia, Technical Report 20071218A, Dec 2007.

 [8] M. Birattari , P. Balaprakash, and M.Dorigo, "ACO/F-Race: Ant colony optimization
and racing techniques for combinatorial optimization under uncertainty,"
MIC 2005: The Sixth Metaheuristics International Conference, Department
of Business Administration, University of Vienna, Vienna, Austria, pp. 107-
112, 2005.

 [9] Marco Dorigo and Thomas Stützle. Ant Colony Optimization, USA: The MIT Press,

Technical Report 20071220A December 2007 page 6 of 6

2004.

 [10] Mauro Birattari, Thomas Stützle, Luis Paquete, and Klaus Varrentrapp, "A Racing
Algorithm for Configuring Metaheuristics," Proceedings of the Genetic and
Evolutionary Computation Conference, pp. 11-18, 2002.

 [11] Paul R. Cohen. Empirical Methods for Artificial Intelligence, Cambridge,
Massachusetts, USA; London, England: The MIT Press, 1995.

 [12] W. F. Tichy , Should computer scientists experiment more? Computer, vol. 31, no.
5, pp. 32-40, May, 1998. IEEE Press.

